Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study
نویسندگان
چکیده
BACKGROUND Slow and cumbersome laboratory diagnostics for Mycobacterium tuberculosis complex (MTBC) risk delayed treatment and poor patient outcomes. Whole-genome sequencing (WGS) could potentially provide a rapid and comprehensive diagnostic solution. In this prospective study, we compare real-time WGS with routine MTBC diagnostic workflows. METHODS We compared sequencing mycobacteria from all newly positive liquid cultures with routine laboratory diagnostic workflows across eight laboratories in Europe and North America for diagnostic accuracy, processing times, and cost between Sept 6, 2013, and April 14, 2014. We sequenced specimens once using local Illumina MiSeq platforms and processed data centrally using a semi-automated bioinformatics pipeline. We identified species or complex using gene presence or absence, predicted drug susceptibilities from resistance-conferring mutations identified from reference-mapped MTBC genomes, and calculated genetic distance to previously sequenced UK MTBC isolates to detect outbreaks. WGS data processing and analysis was done by staff masked to routine reference laboratory and clinical results. We also did a microcosting analysis to assess the financial viability of WGS-based diagnostics. FINDINGS Compared with routine results, WGS predicted species with 93% (95% CI 90-96; 322 of 345 specimens; 356 mycobacteria specimens submitted) accuracy and drug susceptibility also with 93% (91-95; 628 of 672 specimens; 168 MTBC specimens identified) accuracy, with one sequencing attempt. WGS linked 15 (16% [95% CI 10-26]) of 91 UK patients to an outbreak. WGS diagnosed a case of multidrug-resistant tuberculosis before routine diagnosis was completed and discovered a new multidrug-resistant tuberculosis cluster. Full WGS diagnostics could be generated in a median of 9 days (IQR 6-10), a median of 21 days (IQR 14-32) faster than final reference laboratory reports were produced (median of 31 days [IQR 21-44]), at a cost of £481 per culture-positive specimen, whereas routine diagnosis costs £518, equating to a WGS-based diagnosis cost that is 7% cheaper annually than are present diagnostic workflows. INTERPRETATION We have shown that WGS has a scalable, rapid turnaround, and is a financially feasible method for full MTBC diagnostics. Continued improvements to mycobacterial processing, bioinformatics, and analysis will improve the accuracy, speed, and scope of WGS-based diagnosis. FUNDING National Institute for Health Research, Department of Health, Wellcome Trust, British Colombia Centre for Disease Control Foundation for Population and Public Health, Department of Clinical Microbiology, Trinity College Dublin.
منابع مشابه
I-20: Towards The Transparent Embryo: Dynamics and Ethics of Comprehensive Preimplantation Genetic Screening
Background: To study the ethical aspects of comprehensive preimplantation genetic screening (PGS) through microarrays and whole genome sequencing Materials and Methods: In order to pinpoint ethical issues regarding comprehensive embryo screening we have first investigated the technical and moral issues by organizing a campus meeting with experts and by a literature study. Subsequently we have i...
متن کاملJean Saunders Neonatal Intensive Care Units Rapid Whole - Genome Sequencing for Genetic Disease Diagnosis in
and affordable methods of analysis. and cost of WGS continues to rise and fall, respectively. However, fast WGS is clinically useful when coupled with fast quicken to move toward targeted treatment and genetic and prognostic counseling. The authors note that the speed prospective cases. These findings strengthen the notion that WGS can shorten the differential diagnosis process and abdominal ca...
متن کاملWhole-Genome Sequencing of a Clinically Isolated Antibiotic-Resistant Enterococcus faecium EntfacYE
Background and Objective: Enterococcal infections are considered the most common nosocomial infections. Nowadays, enterococci show high resistance to common antibiotics, especially vancomycin. Vancomycin-resistant Enterococcus faecium is one of the most common nosocomial infections, which is included in the World Health Organization priority pathogens list for research and development of new an...
متن کاملIdentification of the rs797045105 in the SERAC1 gene by Whole-Exome Sequencing in a Patient Suspicious of MEGDEL Syndrome
Whole Exome Sequencing (WES) has been increasingly utilized in genetic determinants of various inherited diseases. We identified a new variation in SERAC1 as the cause of 3-Methylglutaconic Aciduria (MEG), Deafness (D), Encephalopathy (E), and Leigh-like (L), MEGDEL syndrome using WES. We found an insertion, rs797045105 (chr6, 158571484, C>CCATG), in the SERAC1 gene with homozygous genotype in ...
متن کاملGenetic and Epigenetic Marks Weave Intricate Connections in Cardiac Disease
With the new era of genome sequencing, the possibility to obtain affordable comprehensive DNA sequencing of a given human being can be foreseen in a relatively near future. Although the sequencing by itself is not any more a challenging technical problem, the relevance of the sequence to the phenotype, especially in terms of medicine, remains a complex conundrum, and specific approaches are pro...
متن کامل